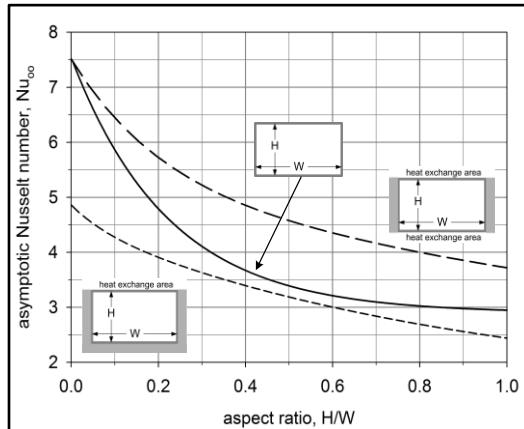


Exercise 21

Estimate the overall heat transfer coefficient (U) for an insulated stainless steel micro-structured reactor with rectangular reaction and cooling channels. The reaction is carried out using toluene as a solvent and water is used as a cooling fluid.

Data


- Heat conductivity of stainless steel: $\lambda_{wall} = 21 \text{ W K}^{-1} \text{ m}^{-1}$
- Length of reaction and cooling channels: $L_c = 0.2 \text{ m}$
- Height of reaction and cooling channels: $H = 0.5 \text{ mm}$
- Width of reaction and cooling channels: $W = 10 \text{ mm}$
- Thickness of stainless steel layer between cooling and heating channels: $e = 2 \text{ mm}$

	water	toluene
$\rho(\text{kg m}^{-3})$	1000	867
$c_p(\text{J kg}^{-1}\text{K}^{-1})$	4200	1720
$\lambda(\text{W K}^{-1} \text{ m}^{-1})$	0.600	0.141
$\mu(\text{Pa} \cdot \text{s})$	$1.0 \cdot 10^{-3}$	$5.8 \cdot 10^{-4}$
$Q(\text{J h}^{-1})$	9	0.36

Solution

$$d_h = 2 \frac{HW}{(H + W)}$$

$$\frac{H}{W} = 0.05 \rightarrow Nu_{\infty} = 4.5 \text{ (chart)}$$

For each channel j ($j = r$: reaction and $j = c$: cooling), calculate:

$$u_j = \frac{Q_j}{H W}$$

$$Re_j = \frac{u_j d_h}{\nu_j}$$

$$Pr_j = \frac{\mu_j c_{p,j}}{\lambda_j}$$

$$\text{If } \left(Re_j \cdot Pr_j \cdot \frac{d_h}{L_c} \right) < 20 \rightarrow Nu_{m,j} = Nu_{\infty}$$

$$Nu_{2,j} = 1.615 \left(Re_j \cdot Pr_j \cdot \frac{d_h}{L_c} \right)^{1/3}$$

$$Nu_{3,j} = \left(\frac{2}{1 + 22 Pr_j} \right)^{1/6} \left(Re_j \cdot Pr_j \cdot \frac{d_h}{L_c} \right)^{1/2}$$

$$Nu_{m,j} = \left[Nu_{\infty}^3 + 0.7^3 + (Nu_{2,j} - 0.7)^3 Nu_{3,j}^3 \right]^{1/3}$$

$$h_j = \frac{Nu_{m,j} \lambda_j}{d_h}$$

$$U = \frac{1}{\frac{1}{h_r} + \frac{e}{\lambda_{wall}} + \frac{1}{h_c}}$$

$$\frac{A}{V} = \frac{W L_c}{H W L_c} = \frac{1}{H}$$

$$U_V = U \frac{A}{V} = \frac{U}{H}$$

dh	9.52E-04	m
H/W	5.00E-02	
Nu inf	4.5	chart
lambda/e	10500	W/m^2 K

	Cooling	reaction	
u	5.00E-01	2.00E-02	m/s
Re	476	28	
Pr	7.0	7.08	
Re Pr dh/Lc	15.9	1.0	
Nu2	4.1	1.6	
Nu3	1.9	0.5	
Num	7.1	4.5	
h	4497	667	W/m^2 K

U	551	W/m^2 K
A	2.00E-03	m^2
V	1.00E-06	m^3
A/V	2000	m-1
Uv	1.10E+06	W/m^3 K